
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025 1

A Game-Based Computation Offloading With
Imperfect Information in Multi-Edge Environments

Bing Lin , Jie Weng , Xing Chen , Member, IEEE, Yun Ma , and Ching-Hsien Hsu , Senior Member, IEEE

Abstract—Mobile Edge Computing (MEC) can augment the
capability of Internet of Things (IoT) mobile devices (MDs)
through offloading the computation-intensive tasks to their ad-
jacent servers. Synergistic computation offloading among MEC
servers is one possible solution to reduce the completion time of
system during peak hours. However, due to the large number of
servers and the long distance between base stations (BSs), synchro-
nizing the information of all servers takes a long time, which is not
applicable to the fluctuant environments. Meanwhile, each server
from different BSs is typically selfish and rational, and can only
obtain the imperfect information from its adjacent servers, which is
a challenge for computation offloading among servers from a global
perspective. This article proposes a game-based computation of-
floading scheme with imperfect information in multi-edge environ-
ments. First, a non-cooperative game with imperfect information
is designed to analyze the complex interactions during synergistic
computation offloading among MEC servers. Second, a Synergis-
tic Balancing Offloading Algorithm (SBOA) through distributed
decision-making manner to obtain the optimal offloading decision
is proposed, which guarantees that the game converges to a Nash
Equilibrium (NE) point. Extensive simulation results reveal the
fast convergence of SBOA. As the percentage of high-load servers
rises and the number of heavy tasks increases, SBOA performs
better than other benchmark algorithms in terms of timeliness,
effectiveness, and system completion time.

Index Terms—Internet of Things (IoT), mobile edge computing
(MEC), computation offloading, non-cooperative game, imperfect
information.

Received 18 March 2024; revised 4 December 2024; accepted 5 December
2024. Date of publication 16 December 2024; date of current version 6 February
2025. This work was supported in part by the National Natural Science Founda-
tion of China under Grant 62072108, in part by the Special Funds for Promoting
High-Quality Development of Marine and Fishery Industries in Fujian Province
under Grant FJHYF-ZH-2023-02, in part by the Fujian Key Technological
Innovation and Industrialization Projects under Grant 2024XQ004, in part by
the National Key Laboratory of Data Space Technology and System under Grant
QZQC2024015, and in part by the University-Industry Cooperation of Fujian
Province under Grant 2022H6024. (Corresponding author: Xing Chen.)

Bing Lin is with the College of Physics and Energy, Fujian Provincial Key
Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal
University, Fuzhou 350117, China, also with the Fujian Provincial Collaborative
Innovation Center for Advanced High-Field Superconducting Materials and En-
gineering, Fuzhou 350117, China, and also with the School of Computer Science,
Peking University, Beijing 100871, China (e-mail: WheelLX@163.com).

Jie Weng and Xing Chen are with the College of Computer and Data Science,
Fuzhou University, Fuzhou 350118, China, and also with the Fujian Provincial
Key Laboratory of Network Computing and Intelligent Information Processing,
Fuzhou 350118, China (e-mail: wengjiefzu@163.com; chenxing@fzu.edu.cn).

Yun Ma is with the Institute for Artificial Intelligence, Peking University,
Beijing 100871, China (e-mail: mayun@pku.edu.cn).

Ching-Hsien Hsu is with the Department of Computer Science and Informa-
tion Engineering, Asia University, Taichung 41354, Taiwan, and also with the
Department of Medical Research, China Medical University Hospital, China
Medical University, Taichung 404, Taiwan (e-mail: robertchh@gmail.com).

Digital Object Identifier 10.1109/TSC.2024.3517336

I. INTRODUCTION

W ITH the rapid development of 5G mobile communi-
cation technology and Internet of Things (IoT), many

IoT applications, such as smart transportation, environment
monitoring, e-sport, e-health, etc., have emerged recently [1].
Computation-intensive tasks generated by these applications in
general require abundant computing resources to ensure the high
service performance [2], [3]. However, due to the limited battery
life and physical size constraint, IoT mobile devices (MDs) are
unable to provide sufficient computing resources for efficiently
task processing to meet the applications’ requirements for low-
latency and high-reliability services.

Mobile Cloud Computing (MCC) [4], [5] is considered as a
promising solution for address above problems. It suggests mov-
ing computation-intensive tasks from MDs to the cloud, which
can provide a large amount of computing resources to efficiently
handle these tasks. However, considerable transmission delay
will be incurred due to the geographically long distance between
the cloud and MDs, so the QoS requirements of latency-sensitive
applications cannot be always satisfied [6].

Mobile Edge Computing (MEC) [7], [8] is a novel com-
puting paradigm to relive the tension between the insufficient
computing resources of MDs and the high computing capacity
requirements of computation-intensive tasks. It provides a better
processing environment for the tasks of MDs by leveraging
the edge resources. A MD can offload its tasks to the MEC
server via wireless link (e.g., 5G or WiFi) between it and the
MEC-enabled base station (BS) [9]. The MEC server offers
much more computing capacity than the MD and are closer
to the MD than the cloud, so it can obtain a high-quality and
low-latency computing service for the computation-intensive
tasks, resulting in more efficient task processing with lower
transmission latency.

Due to the limited computing resources in a MEC-enabled BS,
a large number of tasks offloaded to the BS from the MDs within
its coverage cannot be processed in time during peak hours,
which ultimately leads to system overload. The task processing
performance of an overloaded MEC-enabled BS is severely
degraded, and the user experience is further deteriorated. To
mitigate this problem, most existing methods attempt to reduce
the load on the BS by queuing, postponing, or rejecting the
offloading requests from the covered MDs, resulting in impaired
functionality of the corresponding applications.

To address this problem, one possible solution is to effectively
balance the system load by migrating the high-load BS’s tasks
to its connected BSs to improve the system performance [10].

1939-1374 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5874-4748
https://orcid.org/0009-0009-6201-1956
https://orcid.org/0000-0001-9641-3528
https://orcid.org/0000-0001-7866-4075
https://orcid.org/0000-0002-2440-2771
mailto:WheelLX@163.com
mailto:wengjiefzu@163.com
mailto:chenxing@fzu.edu.cn
mailto:mayun@pku.edu.cn
mailto:robertchh@gmail.com

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

However, the decentralized locations of BSs and the limited
resources of each MEC server make achieving load balancing
among different BSs a difficult mission. Some research works fo-
cus on synergistic computation offloading among MEC servers
through centralized decision-making methods [11], [12], [13],
[14]. They usually employ heuristic-based searching strategies
to find a suitable load balancing scheme. These strategies typi-
cally require a significant amount of searching time to reach a
converged optimized solution, which is difficult to meet the real-
time service requirements of most IoT applications. Besides,
there are only a few works focusing on synergistic computation
offloading through distributed decision-making methods [15],
[16], [17], [18], which are less time-consuming to search a
feasible solution. However, they typically make the offload-
ing decisions according to all MEC servers’ perfect informa-
tion [19], which increases the offloading solution space. The
larger solution space raises the likelihood to fall into poorer
local optimal solutions, leading to a worse performance of the
synergistic computation offloading in multi-edge environments.

The above works have a good inspiration for the synergistic
computation offloading with imperfect information in multi-
edge environments considering the partial offloading mode.
However, they suffer from the following limitations.
� MEC servers from different BSs are typically selfish and

rational, and each server has its specific goal. It is difficult
to fully account for the individual benefits of each MEC
server during computation offloading, which is detrimental
to the optimization of overall system performance. Existing
strategies mostly optimize the system performance from
a global perspective, which are not suitable for the com-
putation offloading among servers considering individual
rationality.

� Existing works mostly make synergistic offloading deci-
sions among servers through centralized methods, which
require a lot of time to find the optimized solution and
cannot be directly applied to the situations where the task
load changes dynamically.

� Distributed decision-making methods with perfect infor-
mation may fall into poorer local optimal solutions due to
the large decision space, resulting in a worse performance
of the obtained synergistic computation offloading scheme.

Motivated by the limitations of the existing literature, the main
contributions of this article include:
� The synergistic computation offloading among MEC

servers with equal status is modeled as a non-cooperative
game with imperfect information, where servers make
selfish and rational decisions according to the imperfect
information about their adjacent servers. The game is then
mathematically analyzed to prove that the Nash Equilib-
rium (NE) point can be obtained.

� A Synergistic Balancing Offloading Algorithm (SBOA)
through distributed decision-making manner is proposed
to obtain the optimal offloading strategy with a NE for all
MEC servers in multi-edge environments. SBOA generates
the optimal offloading vector for each server with convex
optimization theory.

� Extensive experiments are conducted to evaluate the per-
formance of SBOA. Simulation results show the SBOA

has little execution time overhead and can quickly con-
verge to the optimal load-balancing solution in multi-edge
environment. In large-scale scenario, the results obtained
by SBOA for the synergistic computation offloading are
better than that of LC, IPA, DRL, and PSOGA by 15.2%,
3.4%, 4.2%, and 3.0%, respectively, in terms of system
completion time.

The rest of this article is organized as follows. The related
work is reviewed in Section II. Section III displays our prob-
lem formulation. Section IV discusses the construction of a
non-cooperative game with imperfect information, and proves
the existence of NE point for the game. Section V shows a
detailed analysis for our proposed SBOA. Section VI conducts
simulation evaluation and analysis. Finally, the work of this
article is outlined in Section VII.

II. RELATED WORK

In this section, we briefly review the research on computation
offloading between IoT devices and MEC servers, synergistic
offloading among MEC servers, distributed offloading between
servers with perfect information, and computation offloading
between servers with imperfect information.

Many research efforts have been launched to computation
offloading between IoT devices and MEC servers. IoT devices
can effectively improve their performance by offloading tasks to
MEC servers. Chen et al. [20] designed an efficient three-step
scheme consisting of alternating optimization, sequential tuning,
and semi-definite relaxation, which aimed to jointly optimize
the offloading decisions of IoT devices’ tasks as well as the
resource allocation of servers’ computation and communication
in mobile cloud, to reduce the overall cost of computation, delay,
and energy for IoT devices. Lu and Zhang [21] addressed a
computation offloading problem for partitionable applications
in dense networks. They jointly optimized the computation and
radio resources, and aimed to minimize the task completion
time. Extensive simulation results had showed the proposed
mechanism performed better than the centralized optimal so-
lution. Zhou et al. [22] investigated a UAV-aided computation
offloading problem in MEC networks. They modeled the in-
teraction among the edge service provider (ESP) and mobile
users (MUs) through the Stackelberg game, and employed the
backward induction approach to analyze it to maximize the
utility of the ESP. The extensive evaluation results demonstrated
the effectiveness of the proposed algorithm compared with
other benchmark methods. Liu et al. [23] presented a flexible
partial offloading strategy to adaptively meet each user’s specific
requirement regarding energy consumption and delay. They
considered the practical variations in the user request patterns,
and proposed an iterative algorithm to minimize the overheads
subject to power constraints, task workload, and tolerable delay.
Zhu et al. [24] proposed a deep reinforcement learning-based
edge computing offloading algorithm for software-defined IoT.
This algorithm could effectively reduce energy consumption and
task completion time compared with other classical methods.
Chen et al. [25] designed an energy efficient task offloading
algorithm for digital twin-empowered MEC via deep reinforce-
ment learning, to improve energy efficiency and balance the

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: GAME-BASED COMPUTATION OFFLOADING WITH IMPERFECT INFORMATION IN MULTI-EDGE ENVIRONMENTS 3

workload. The above methods reduce the server load through
queuing, postponement, or rejection schemes when receiving
too many tasks, which will sacrifice the quality of experience
for IoT devices.

To address above issues, some studies have focused on syn-
ergistic offloading among multiple MEC servers to achieve load
balancing. These solutions can reduce the response latency of
high-load MEC servers, and improve the user experience of IoT
devices, through fully utilizing the arithmetic power of servers.
Diamanti et al. [26] investigated the application of the RSMA
technique to facilitate the users’ concurrent offloading to multi-
ple servers in a multi-server MEC system. Yi et al. [27] studied
a long-term workload management problem for multi-server
edge computing with server collaboration, and considered both
competitions and collaborations among strategic edge servers
in sharing their computing capacities. They presented a novel
cooperative queueing game approach, which outperformed other
counterparts. Yang et al. [28] presented the differential evolution
(DE) based multi-UAV deployment scheme to balance the load
for UAVs. The experimental results revealed that the superiority
and feasibility of the proposed scheme. Wan et al. [29] designed
an energy-aware load balancing and scheduling scheme based on
fog computing in smart factory. Simulation results showed that
the method performed optimal load balancing and scheduling for
the mixing work robots. Lin et al. [30] proposed a self-adaptive
discrete particle swarm optimization algorithm with genetic
algorithm operators to optimize the data transmission time
among servers. The above studies mainly employ centralized
approaches to obtain the load balancing solution among servers,
which may cost much time and is not suitable for scenarios with
fluctuating loads.

Distributed algorithms [31] can alleviate the above prob-
lems by giving equal decision-making power to MEC servers,
which effectively reduces the time taken to obtain solutions.
However, there is non-cooperative competition among servers,
which makes the offloading problem more complicated. Liu
et al. [15] formulated the multi-server load balancing problem
into a non-cooperative game, and designed an iterative proximal
algorithm (IPA) to reduce the response time of all servers.
Simulation results revealed that the IPA converged quickly to a
NE point and performed better than other benchmark algorithms.
Fan et al. [16] presented a game-based multitype task offloading
strategy among MEC-enabled BSs. They formulated the task
offloading with different types (indicated by delay tolerance,
data size, and computation amount) into a non-cooperative
game, and proposed a distributed iterative algorithm to balance
the delays of all tasks from each MEC-BS. Xu et al. [18] intro-
duced a distributed algorithm with polynomial time to address
the distributed assignment with load balancing for deep neural
networks (DNN) inference at the edge. Extensive simulations
showed the solution could improve upon the state-of-the-art in
terms of load balance, inference time, and convergence. In these
studies, MEC servers need to know perfect information about
other all servers before they make the computation offloading
decisions. However, these distributed algorithms with perfect
information may fall into poorer local optimal solutions due to
the large decision space.

Compared to the perfect information-based approaches, the
core challenge encountered by imperfect information-based
approaches is how to optimize the algorithms to ensure the
system performance under information-constrained conditions,
in order to minimize the performance degradation caused by
imperfect information. Hu et al. [32] addressed the hetero-
geneous task offloading with imperfect information in a dis-
tributed edge computing system. They formulated this problem
as a multi-player minority game (MG), and proposed an MG
based scheme to reduce the task processing time. They proved
that the proposed algorithm could converge to a near-optimal
point, and its superior performance. Wang et al. [33] designed
an incomplete information based two-tier game (IITG) model
to realize collaborative computing at the edge of emergency
communication networks. They also proposed a near-optimal
IITG algorithm (N-IITG) to seek the unique Bayesian Nash
equilibrium, which incentivized idle computing devices to share
computation resources. Extensive simulations showed N-IITG
has better performance compared with other classical methods.
The above methods mainly adopts the master-slave architecture
for the deployment of computation offloading policies (i.e., the
master node is responsible for the formulation and allocation
of computation offloading policies, and the slave nodes carry
out computation offloading according to the policies formulated
by the master node). This system architecture has limitations
in terms of system reliability and fault tolerance. Once the
master node fails or malfunctions, the system loses the ability
to formulate computation offloading policies, resulting in the
inability of the slave nodes to perform effective load balancing.

Table I has compared some related work with our work.
We categorize the computation offloading strategies in seven
dimensions: Environment, Surrounding perception, Interaction,
Offloading mode, Execution manner, Object and Method. The
environment includes device-edge, multi-edge, and device-
edge-cloud scenarios. The surrounding perception are divided
into perfect information and imperfect information. The inter-
actions among servers are divided into cooperative and non-
cooperative games. The offloading modes contain full offload-
ing and partial offloading. The execution manners are mainly
divided into centralized manner and distributed manner, where
the decision maker is device or edge. The most common op-
timization objectives are cost and time. Finally, we classify
the offloading strategies into heuristics, mathematical program-
ming, machine learning and game. Despite the aforementioned
prominent developments in recent years, a considerable open
issue remains on computation offloading in multi-edge environ-
ments: Synergistic computation offloading through distributed
decision-making manner among MEC servers with imperfect in-
formation. Inspired by above observations, this article proposes
a game-based computation offloading scheme in imperfect-
information multi-edge environments.

III. PROBLEM FORMULATION

The main symbols involved in this paper are shown in Table II.
In this section, we formulate the problem of synergistic com-

putation offloading in multi-edge environments. As shown in

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

TABLE I
COMPARISON OF OUR WORK WITH RELATED WORK

TABLE II
SYMBOLS AND DEFINITIONS

Fig. 1, we consider a scenario consisting of multiple BSs, each
of which is equipped with a MEC server. These MEC servers
with equal status have different computational capabilities, and
provide computation offloading services for the IoT MDs cov-
ered by the corresponding BS. IoT MDs can offload their tasks to
BSs for auxiliary computing, thus improving the task processing
performance.

There are n MEC servers in the multi-edge environments,
E = {e1, e2, . . ., en}, where ei denotes the ith server. fi is

Fig. 1. Framework of synergistic computation offloading in multi-edge
environments.

ei’s service rate, which represents the task volume that can
be processed by server ei per time unit. Each MEC server is
interconnected with its adjacent servers via wired fiber con-
nections, which provide bi-directional data transmission with
the same bandwidth. Too many information interactions among
servers can lead to a large number of offloading options for each
server, increasing the offloading solution space and the risk of
falling into poor local optimal solutions for the final offloading
strategy [34]. Therefore, the information sharing among MEC

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: GAME-BASED COMPUTATION OFFLOADING WITH IMPERFECT INFORMATION IN MULTI-EDGE ENVIRONMENTS 5

servers is restricted in our model. Specially, each MEC server
only has access to the information of its adjacent servers (i.e.,
imperfect information), instead of the information of all servers
(i.e., perfect information) in the multi-edge environments.

The transmission time per unit of task volume between MEC
servers [35] is defined as

D =

⎡
⎢⎣
d1,1 · · · d1,n

...
. . .

...
dn,1 · · · dn,n

⎤
⎥⎦ , (1)

where di,j denotes the time it takes for server ei to offload the
unit task volume to server ej . Note that di,j = dj,i, and di,j = 0
when i = j. If server ei and server ej are not adjacent servers,
di,j = +∞. In addition, the feasible server vector of server ei,
Ai= {ej |di,j �= +∞}, denotes all servers that can perform the
tasks on server ei (i.e., ei’s adjacent servers as well as its own).

The average task arrival rate of server ei is defined as λi, which
represents the task volume offloaded from IoT MDs to server ei
per time unit. Tasks can be performed locally or remotely on
adjacent servers through computation offloading. We assume
that each MEC server can arbitrarily partition the tasks from
IoT MDs and schedule them to other adjacent servers [36]. si is
the aggregation task arrival rate of server ei, which contains the
arrival tasks executed by ei itself as well as the tasks offloaded to
it by other adjacent servers per time unit. The offloading strategy
for all MEC servers is defined as

X =

⎡
⎢⎣
X1

...
Xn

⎤
⎥⎦ =

⎡
⎢⎣
x1,1 · · · x1,n

...
. . .

...
xn,1 · · · xn,n

⎤
⎥⎦ , (2)

where Xi is the offloading vector of server ei, which represent
ei’s balancing offloading plan. Note that a MEC server can only
offload its own arrival tasks, and cannot schedule tasks offloaded
from other servers. xi,j denotes the task volume offloaded from
server ei to server ej per time unit. When i = j, xi,j represents
ei’s arrival task volume performed by server ei itself per time
unit. Specially, xi,j = 0 if ej /∈ Ai.

In our work, the process queue on MEC servers regards as
an M/M/1 queue model [37]. Before synergistic computation
offloading, all arriving tasks on servers are executed locally and
the load on each server is equal to its amount of arriving tasks
(i.e., si = λi). Therefore, the average completion time tloci of all
arriving tasks on ei before balancing offloading is represented
as

tloci =
1

λi

[
si

fi · (fi − si)
+

si
fi

]
. (3)

After synergistic computation offloading, the tasks on server
ei include the arrival tasks executed by ei itself as well as
the tasks offloaded to it by other adjacent servers (i.e., si =
xi,i +

∑n
j=1,j �=i xj,i). In addition, the computation offloading

between MEC servers incurs additional communication over-
heads. Therefore, the average completion time toffi,j of tasks
offloaded from server ei to server ej can be expressed as

toffi,j =
1

λi

[
sj

fj · (fj − sj)
+

xi,j

fj
+ xi,j · di,j

]
, (4)

toff
i

=
∑

ej∈Oi

toffi,j , (5)

where Oi ⊆ Ai is the ei’s offloading server vector, and ej ∈ Oi

means that ei must has tasks to offload to ej . toffi is the average
completion time of ei after balancing offloading.

Our goal is to minimize each server’s average completion
time after synergistic computation offloading in multi-edge en-
vironments. Therefore, the disutility function of server ei in our
imperfect-information model is defined as

Qi=
1

λi

⎧⎨
⎩

∑
ej∈Oi

[
sj

fj · (fj − sj)
+

xi,j

fj

]
+

∑
ej∈Oi

xi,j · di,j

⎫⎬
⎭ .

(6)

The goal of each server ei in the multi-edge environments is to
dynamically offload the tasks, according to the current network
state and the adjacent servers’ offloading decisions X−i, to find
the optimal offloading decision that minimizes the disutility
function of the server ei itself. Therefore, the corresponding
optimization problem of server ei can be defined as (7).

Minimize Qi (Xi,X−i)

s.t. C1 : xi,j ≥ 0

C2 :

n∑
j=1

xi,j = λi

C3 :
n∑

i=1

xi,j < fj , (7)

where the third constraint C3 ensures that the offloaded task
volume to server ej per unit time should be less than its service
rate.

Each server should have incentives for computation offload-
ing [38], and the designed reward scheme Ri for server ei is
defined as

Ri = −Qi, (8)

where the process of reducing disutility (i.e., reducing com-
pletion time) for each server essentially constitutes rationality
incentives for servers in our work.

IV. GAME FORMULATION AND PROOF

In this section, we first construct a non-cooperative game
with imperfect information to achieve the efficient balancing
offloading strategies among MEC servers, and then prove the
existence of NE point for the game.

A. Game Formulation

It is usually categorized into cooperative and non-cooperative
games according to the relationship between the players in
the game theory [39]. The difference between cooperative and
non-cooperative games is whether the players form a binding
coalition or not, which will affect the players’ decisions. Specif-
ically, the cooperative game takes full account of the fair position

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

among the players, whereas players in the non-cooperative game
are selfish and they prioritize maximizing their own benefits.

In addition, it is also categorized into perfect-information
and imperfect-information games depending on the degree of
information sharing among the players [40]. In the perfect-
information game, each player has perfect information about
other players’ characteristics, benefit functions, and strategy
sets, whereas each player does not have such perfect information
in the imperfect-information game.

In multi-edge environments, each MEC server is regarded as
a player in a game, whose goal is to make an optimal offloading
strategy to reduce the average completion time of its arriving
tasks. Server ei’s average completion time is not only dependent
on its own offloading strategy, but also influenced by other
servers’ offloading strategies. This is because server ei can
execute its tasks locally, or offload them to its adjacent servers,
and also has to execute the tasks offloaded from its adjacent
servers.

In the game, each MEC server is selfish and tries to optimize
their goals (i.e., minimizing the disutility function) according
to the local information of its adjacent servers. Therefore, we
define this problem as a non-cooperative game with imperfect-
information, where the players (i.e., servers) have fair positions.
The game consists of a set of players, a set of strategies, and a
set of disutility functions, which is expressed as (9).

G =< E, {Xi}ei∈E , {Qi}ei∈E >, (9)

where E is the set of n MEC servers (i.e., players), Xi is the
server ei’s offloading vector (i.e., strategy set), and Qi is the
server ei’s disutility function.

In game theory, Nash Equilibrium (NE) is employed as an
important condition to measure the stability of a system. In our
work, the definition of the NE point is described below.

Definition 1 (NE point): The NE point of the game G is
an achievable offloading strategy X∗ = {X∗

1, . . . ,X
∗
n} for all

MEC servers, where any server’s strategy {X∗
i}ei∈E ⊆X∗

satisfies the following conditions.

Qi

(
X∗

i ,X
∗
−i
) ≤ Qi

(
X ′

i,X
∗
−i
)
, (10)

where {X ′
i}ei∈E is an arbitrary strategy of the server ei, and

X∗
−i = {X∗

1, . . . ,X
∗
i−1,X

∗
i+1, . . . ,X

∗
n}.

According to Definition 1, no player can reduce its disutility
by unilaterally changing its strategy when the system is at NE
point, so no player has an incentive to deviate from the NE point.

B. Existence of NE Point

The game is transformed into variational inequalities [39], and
then the existence of NE point for the synergistic computation
offloading in multi-edge environments will be proven.

Theorem 1: For each MEC server ei, its offloading vector Xi

(i.e., strategy set) is closed and convex, and its disutility function
Qi is continuously differentiable.

Proof: In our system, each server ei’s offloading vector
Xi satisfies constraints C1− C3 in (7), where {Xi|∀xi,j ∈
[0, λi]}. According to the definition of a closed convex set [23],

it is obvious that the offloading vector Xi (i.e., strategy set) is
closed and convex.

For the latter half, we should prove the derivative function’s
continuity of the disutility functionQi. SinceQi is a multivariate
nonlinear function, the gradient q is defined as (11), which rep-
resents the combination of partial derivatives in each direction
for Qi.

q (Xi,X−i)
Δ
=(qi (Xi,X−i))ni=1=(∇Xi

Qi (Xi,X−i))ni=1,
(11)

where the expression of qi(Xi,X−i) is described as (12) based
on the definition of the gradient [41]. In addition, q(Xi) =
q(Xi,X−i) and qi(Xi) = qi(Xi,X−i).

qi (Xi,X−i) = ∇Xi
Qi (Xi,X−i)

=

(
∂Qi

∂xi,1
, . . .,

∂Qi

∂xi,n

)
. (12)

Then, server ei’s disutility function Qi can be rewritten as
(13).

Qi =
1

λi

⎧⎨
⎩

∑
ej∈Oi

[
sj

fj · (fj − sj)
+

xi,j

fj

]
+

∑
ej∈Oi

xi,j · di,j

⎫⎬
⎭

=
1

λi

⎧⎨
⎩

∑
ej∈Oi

[
1

fj − sj
− 1

fj
+
xi,j

fj

]
+

∑
ej∈Oi

xi,j · di,j

⎫⎬
⎭ .

(13)

The partial derivative of Qi with respect to xi,j is

∂Qi

∂xi,j
=

⎧⎨
⎩

1
λi

(
1

(fj−sj)2+
1
fj
+di,j

)
, if i �= j

1
λi

(
1

(fj−sj)2 + 1
fj

)
, else

. (14)

Since the partial derivatives of Qi exist and are continuous,
it is obtained that the disutility function Qi is continuously
differentiable.

Theorem 2: The disutility function of MEC server ei is
convex when other servers no longer change their offloading
strategies.

Proof: According to the definition of a convex function [42],
the disutility function Qi is convex if its Hessian matrix H(Qi)
is positive definite.

H(Qi) =

⎡
⎢⎢⎣

∂2Qi(Xi,X−i)
∂2xi,1

· · · ∂2Qi(Xi,X−i)
∂xi,1∂xi,n

...
. . .

...
∂2Qi(Xi,X−i)

∂xi,n∂xi,1
· · · ∂2Qi(Xi,X−i)

∂2xi,n

⎤
⎥⎥⎦ , (15)

∂2Qi (Xi,X−i)
∂xi,j∂xi,k

=

{
2

(fj−sj)3 , if i = j = k

0 , else
. (16)

When other servers no longer change their offloading strate-
gies, the Hessian matrix H(Qi) of server ei’s disutility function
Qi is a diagonal matrix with diagonal elements of 2

(fj−sj)3 . In our

system, all MEC servers should satisfy the third constraintC3 in
(7), which means that fj − sj > 0. Accordingly, 2

(fj−sj)3 > 0

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: GAME-BASED COMPUTATION OFFLOADING WITH IMPERFECT INFORMATION IN MULTI-EDGE ENVIRONMENTS 7

and the Hessian matrix H(Qi) is positive definite. Therefore,
the disutility function of MEC server ei is convex when other
servers no longer change their offloading strategies, according
to the definition of a convex function.

Theorem 3: If Xi is a nonempty closed convex set and Qi

is a continuously differentiable convex function, then solving
the game G =< E, {Xi}ei∈E , {Qi}ei∈E > is equivalent to
finding a solution to the variational inequality VI(X, q).

Proof: Obviously, Xi is a nonempty set. According to the
proofs for Theorems 1 and 2, Xi is a nonempty closed convex
set and Qi is a continuously differentiable convex function
for our game. Scutari et al. [43] have discussed the intrinsic
relationship between game theory and variational inequalities.
According to the analysis results, if the first part in Theorem 3
holds, solving the game G =< E, {Xi}ei∈E , {Qi}ei∈E > is
equivalent to finding a solution to the variational inequality
VI(X, q). Therefore, Theorem 3 holds for our game.

Theorem 4: The gradient q in VI(X, q) is strictly monotone.
Proof: If the conditions in (17) are satisfied, gradient q is

strictly monotone.

(X−X∗)T · (q (X)− q (X∗))

= (X1 −X∗
1, . . .,Xn −X∗

n)
T ·

(q1(X1)− q1(X
∗
1), . . ., qn(Xn)− qn(X

∗
n)) ≥ 0, (17)

which is equivalent to (18).

n∑
i=1

(Xi−Xi
∗)T · (qi (Xi)− qi (Xi

∗)) ≥ 0. (18)

For ∀i ∈ n, if

(Xi−Xi
∗)T · (qi (Xi)− qi (Xi

∗)) ≥ 0, (19)

then (18) holds.
If the Jacobian matrixJqi(Xi) for qi is positive definite, then

(19) holds. Eqution (20) is obtained according to the definition
of the Jacobian matrix [44].

Jqi (Xi) = (∇2
XiXi

·Qi(Xi)) = H(Qi). (20)

Theorem 2 has proved that the Hessian matrix H(Qi) is
positive definite, so the Jacobian matrix Jqi(Xi) for qi is also
positive definite. Therefore, the gradientq inVI(X, q) is strictly
monotone.

According to the analysis results [39], if the gradient q is
strictly monotone, there is at least one NE point for the game.
In summary, we prove the existence of NE point for our game.

V. OUR PROPOSED SBOA

In the non-cooperative game with imperfect information for
synergistic computation offloading in multi-edge environments,
the players are self-interested and their status during com-
putation offloading is equal. They make offloading decisions
independently according to the imperfect information from their
adjacent servers. They only focus on optimizing their own goals
and do not take into account the impact of their own strategy
changes on other players. Due to the existence of NE point for

Algorithm 1: Synergistic Balancing Offloading Algorithm
(SBOA).

Input: fi, λi,D,Ai.
Output: X∗.
1: Initialization:X(0) ← diag({λi}ni=1), k ← 0;
2: Each server broadcasts its load information to the

adjacent servers;
3: while true do
4: k ← k + 1;
5: foreach ei ∈ E do
6: Obtain O∗i through Algorithm 2;
7: Based on variables O∗i , fi, λi,D and X−i, using

CVX to obtain X
(k)
i , where

X
(k)
i = argmin{Qi(Xi,X−i)};

8: end
9: if X(k) = X(k−1) then
10: break;
11: end
12: end
13: X∗ ←X(k);
14: return X∗;

our game, we minimize the disutility function of each player to
obtain its optimal offloading vector iteratively.

A Synergistic Balancing Offloading Algorithm (SBOA) is
proposed to obtain the optimal offloading strategy with a NE for
all MEC servers. The algorithm is executed in a distributed man-
ner on all MEC servers in turn, which tries to generate the optimal
offloading vector for each server. It adopts the distributed archi-
tecture for the deployment of computation offloading policies,
which could avoid the potential threat of single-point-of-failure
to the stability and performance of the entire system. The pseu-
docode of SBOA is described as Algorithm 1. In the beginning,
each server’s offloading vector is equal to its amount of arriving
tasks (i.e., computing locally), and the number of current itera-
tion is initialized to 0 (line 1). Then, each MEC server broadcasts
its load information to their adjacent servers (line 2). In each
iteration, each server ei obtains its optimal offloading server
vectorO∗i through Algorithm 2, and utilizes the CVX toolkit [45]
to obtain its optimal offloading vector X(k)

i in current iteration,

where X
(k)
i = argmin{Qi(Xi,X−i)} (lines 4-8). This pro-

cess uses a convex optimization method, which belongs to the
mathematical optimization [46]. After all MEC servers obtain
their optimal offloading vectors, a new iteration begins until all
servers’ offloading vectors are fixed. If all servers’ offloading
vectors in current iteration are consistent with those of the
previous iteration, the algorithm reaches a NE point and exits
the iteration (lines 9-11). Finally, X(k) is assigned to X∗ as the
offloading strategy with a NE for all MEC servers (line 13).

A MEC server may not offload tasks to every adjacent server
with an available offloading policy. It should have a suitable
offloading server vector Oi to better optimize its disutility
function based on its imperfect information. An Adaptive Se-
lection Algorithm (ASA) is proposed to obtain server ei’s op-
timal offloading server vector O∗i . The pseudocode of ASA

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Algorithm 2: Adaptive Selection Algorithm (ASA).

Input: fi, λi,D, {X−i}e−i∈Ai
,Ai

Output: O∗i
1: Initialization: m← |Ai|,W ← ∅;
2: Generate B = {b1, b2, . . ., b2m−1} according to Ai,

where bk = [0, . . ., 1]m;
3: foreach bk ∈ B do
4: Ō

k
i ← ∅;

5: foreach bk[r] do
6: if bk[r] = 1 then
7: Ō

k
i ∪ {Air};

8: end
9: end
10: Based on variables fi, λi,D, {X−i}e−i∈Ai

and Ō
k
i ,

using CVX to obtain Qk
i , where

Qk
i = min{Qi(Xi,X−i)};

11: W ∪ {(Ōk
i , Q

k
i)};

12: end
13: O∗i ← Ō

argmink{Qk
i |(Ō

k
i ,Q

k
i)∈W

i ;
14: return O∗i ;

is shown in Algorithm 2. In the beginning, the value of m is
initialized to the number of ei’s adjacent servers (i.e., |Ai|),
and the pending set W is set to be empty (line 1). Then, the
set B = {b1, b2, . . ., b2m−1} is constructed, and it consists of
2m − 1 different 0/1 combinations bk = [0, . . ., 1]m of length
m (i.e., full-coverage combinations without [0, . . ., 0, 0]m) (line
2). Each bit of bk corresponds to whether the server at the same
location of Ai is selected or not, where 1 means the server is
selected and 0 means the opposite. Next, It iterates through the
elements in B one by one. For bk, each bit of which is checked.
If the value is 1 at a position of bk, the server corresponding to
that position is added to Ō

k
i (lines 4-9). The CVX toolkit [45]

is utilized to obtain the minimum of the disutility function Qk
i ,

where Qk
i = min{Qi(Xi,X−i)} (line 10). This process uses a

convex optimization method, which belongs to the mathematical
optimization [46]. The couple (Ō

k
i , Q

k
i) in current iteration k is

added to W (line 11). After scanning all combinations of B, it
selects the Ō

k
i corresponding to the minimum Qk

i in the couples
ofW , and assigns it toO∗i . This process utilizes a greedy strategy
to obtain the minimum Qk

i , which belongs to the heuristics [47].
The time complexity of the above algorithms is discussed

as follows. ASA (i.e., Algorithm 2) is part of SBOA (i.e., Algo-
rithm 1). In Algorithm 2, the time complexity of the initialization
process (line 1) is O(1), and the generation of the set B with
2m − 1 different combinations (line 2) is O(2m ·m). In each

for process (lines 3-12), the time complexity of constructing Ō
k
i

(lines 4-9) is O(m). Supposing the time complexity of solving
the problem of obtaining the minimum of the disutility function
Qk

i with CVX toolkit (line 10) is O(σ). Accordingly, the time
complexity of the for process is O(2m · (m+ σ)). Finally, the

selection process of the Ō
k
i corresponding to the minimum Qk

i

in the couples of W (line 13) is O(2m − 1). Therefore, the time

complexity of ASA is O(1 + 2m ·m+ 2m · (m+ σ) + 2m −
1), which can be simplified to O(2m · (m+ σ)).

In Algorithm 1, the time complexity of the initialization
process for X and k (line 1) is O(n2 + 1), and the broadcast op-
eration in parallel for each MEC server (line 2) is O(m). In each
iteration, the time complexity of obtaining the optimal offload-
ing server O∗i for each server in parallel through Algorithm 2
(line 6) is O(2m · (m+ σ)). Supposing the time complexity of
obtaining the optimal offloading vector X(k)

i with CVX toolkit
(line 7) is O(ξ), and the maximum number of iterations is L.
Accordingly, the time complexity of the iteration process (lines
3-12) isO(L · (2m · (m+ σ) + ξ)). Therefore, time complexity
of SBOA is O(L · (2m · (m+ σ) + ξ) + n2 +m+ 1), which
can be simplified to O(L · (2m · (m+ σ) + ξ) + n2).

VI. PERFORMANCE ANALYSIS

Massive experiments are conducted in this section to evaluate
the performance of our proposed algorithm (i.e., SBOA). In par-
ticular, the following Research Questions (RQs) are discussed
with the experimental evaluations.

RQ1: Can our proposed algorithm efficiently converge to a
NE point, and reduce the average completion time of system?
(Section VI-C)

RQ2: Is SBOA better than other benchmark algorithms in
terms of reducing the average completion time of system after
balancing offloading? (Section VI-D)

RQ3: Do different volumes of arriving tasks have an impact
on the performance of SBOA? (Section VI-E)

A. Basic Experimental Setup

All simulation experiments are run on the Win11 64-bit
operating system with an Intel(R) Core(TM) i5-10500 CPU at
3.10 GHz and 8 GB RAM. Both the proposed SBOA and other
algorithms are implemented based on Python 3.10.

We build a multi-edge environment with the dataset of MEC
server distribution with latitude and longitude information in
Shanghai [48], [49], [50]. There are three different scale of MEC
servers in our experiments, where n = {15, 30, 45}. Figs. 2(a),
(b) and (c) display the actual location distribution of MEC
servers with different scales (i.e., small, medium and large scale),
respectively. The system model are constructed with Pandas
1.3 and Numpy 1.20, and CVXPY 1.2 and its solver CPLEX
are used to solve the convex functions. In each scenario, the
average task arrival rate λi and the service rate fi follow the
normal distribution N(10, 4) and N(15, 6), respectively [30].
According to the distance between MEC servers in Shanghai,
the transmission time per unit of task volume D between MEC
servers is mapping to the interval [0.1, 0.2]s [51]. Moreover,
the number of adjacent servers m satisfies 0 < m ≤ 3, where
m ∈ Z [24].

B. Benchmark Algorithms

To analyze the performance of the proposed SBOA in re-
ducing the average completion time of MEC servers, and its

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: GAME-BASED COMPUTATION OFFLOADING WITH IMPERFECT INFORMATION IN MULTI-EDGE ENVIRONMENTS 9

Fig. 2. Actual location distribution of MEC servers with different server scales.

adaptability to different scenarios, we introduce the following
four benchmark algorithms.

(i) LC (Local Computing): Each MEC server executes its tasks
locally without computation offloading.

(ii) PSOGA (Particle Swarm Optimization algorithm employ-
ing the update operators of Genetic Algorithm) [30]: It is a
centralized optimization algorithm inspired by bird predation
behavior and Darwinian evolutionary theory [52], [53]. PSOGA
constructs the computation offloading of MEC servers as a par-
ticle, and the approximate optimal solution of the optimization
problem can be obtained through particle search and muta-
tion [54]. The related parameters and particle update operations
are set based on [28]. The number of iterations and the population
size are set to 10000 and 1000, respectively.

(iii) IPA (Iterative Proximal Algorithm) [15]: It constructs
a perfect-information and non-cooperative game in multi-edge
environments, and iteratively solves the NE solution to obtain an
optimal computation offloading strategy among MEC servers.
When the difference between the results of the current iteration
and the results of the previous iteration is less than ε, the NE
point is considered to have been reached and the current solution
is taken as the best one for the game. According to [15], the
parameter ε is set to 0.1.

(iii) DRL (Deep Reinforcement Learning) [55]: It combines
deep neural networks with reinforcement learning technique,
which employs the DRL method based on DQN. We use {λi, si}
as the state space, and use Xi as the action space. Both the
target network and the policy network consist of 1 input layer,
2 hidden layers, and 1 output layer, where each hidden layer
has 128 hidden neurons. The learning rate is set to 0.001, the
discount factor is set to 0.99, the capacity of the replay buffer is
set to 100000, and the batch size is set to 32 [51].

C. RQ1: Convergence and Effectiveness

We try to verify the convergence of SBOA, thereby verifying
whether our proposed scheme can effectively converges to a
NE point. Fig. 3 displays the aggregation task arrival rate of
ei (i.e., si) versus the number of iterations of SBOA. Fig. 4
depicts the average completion time of ei (i.e., toffi) versus

Fig. 3. Aggregation task arrival rate of ei versus the number of iterations of
SBOA.

Fig. 4. Average completion time of ei versus the number of iterations of
SBOA.

the number of iterations of SBOA. In these experiments, we
randomly selected 4 servers (i.e., e1, e4, e9, and e13) from 15
MEC servers to observe how the aggregation task arrival rate and
average completion time of ei change. In Fig. 3, the aggregation

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Fig. 5. Average completion time of system versus the number of iterations of
SBOA.

task arrival rate of e1 increases rapidly and then decreases. This is
because that e1 starts with a low-load state, and other servers will
choose to offload tasks to it for execution, resulting in overload
in e1 upfront. As the number of iterations increases, e1 reduces
its own load by offloading its arrival tasks to other low-load
adjacent servers. Correspondingly, the average completion time
of e1 increases rapidly and then decreases in Fig. 4. Both e4
and e13’s load decrease monotonically. They can obtain better
computation offloading strategies in each iteration, and offload
their tasks to suitable servers to reduce the average completion
time. e9’s load increase monotonically, which is in general the
target for other servers’ computation offloading in each iteration.
From Figs. 3 and 4, we can see that both the aggregation task
arrival rate and the average completion time of ei tend to be
stable after a limited number of iterations. Therefore, SBOA
can converge to a NE point in a finite number of iterations.
Specifically, both si and toffi,j reach a relatively stable state after
about 5 iterations, which indicates the high efficiency of SBOA.

Fig. 5 shows the average completion time of system versus
the number of iterations of SBOA. The average completion time
of system, toff , is defined as follows.

toff =

∑
ei∈E toffi

n
. (21)

Although the average completion time of ei does not always
decrease during computation offloading in Fig. 4, the average
completion time of system in Fig. 5 maintain a monotonically
decreasing trend. After the system reaches a steady state, the
average completion time of system drops by 35.3%, which indi-
cates that SBOA has good balancing performance for reducing
the computation pressure on high-load servers.

D. RQ2: Performance Evaluation and Comparisons

This work focuses on reducing the average completion time
of system, which maps to the average disutility of system Q.

Q =

∑
ei∈E Qi

n
. (22)

Fig. 6 displays the average disutility of system with different
service rates in various scenarios (i.e., small, medium, and large),
where the service rate fi follows different normal distributions
(i.e., N(15, 6), N(13, 5) and N(11, 4)). From the overview in
Fig. 6, we can obviously find that the average disutility of
system shows a monotonically increasing trend as the service
rate decreases. This is because that MEC servers have to handle
the same volume of tasks with reduced service rate as the fi
decreases, leading to a consequent rise in the average completion
time of system. LC’s performance is worst in all three scenarios.
LC executes tasks locally without computation offloading, hence
there is no synergistic computation offloading among MEC
servers with LC.

Fig. 6(a) displays the average disutility of system with dif-
ferent service rates for the small-scale scenario. PSOGA has
the best performance, which is mainly due to its global search
nature, resulting in finding optimal solutions in the small-scale
scenario. The maximum performance gap between SBOA and
PSOGA is 3.7% and the average gap is only 1.6%. Compared
with LC, IPA, and DRL, SBOA reduces the average disutility of
system by 27.4%, 3.3%, and 4.2%, respectively. In Fig. 6(b), the
performance gap between SBOA and PSOGA is−1.6%−4.0%
and the average gap is also 1.6%. As the solution space in-
creases, PSOGA cannot achieve the optimal performance within
a limited number of iterations. SBOA decreases the average
disutility of system by 14.7% compared with IPA. The main
reason for the large performance gap between IPA and SBOA
is that IPA makes offloading decisions with perfect information,
which increases the algorithm’s decision space with more MEC
servers, leading to falling into poorer local optimal solutions
with a high probability. Fig. 6(c) displays the average disutility
of system with different service rates for the large-scale scenario.
SBOA has the best performance, which is 1.1%-7.1% better
than that of PSOGA. PSOGA’s performance is worse for the
large-scale scenario. This is because that the crossover and
mutation operations for update hardly improve particle qual-
ity for large-scale solution space. In summary, SBOA slightly
underperforms PSOGA with a small number of MEC servers.
However, as the number of servers increases, the performance
of PSOGA gradually decreases, while SBOA is able to show su-
perior performance. Notably, SBOA’s stability and effectiveness
are significantly better than that of IPA, DRL, and LC in either
scenario.

Fig. 7 exhibits the average disutility of system with different
task arrival rates in various scenarios (i.e., small, medium, and
large), where the task arrival rate λi follows different normal
distributions (i.e., N(10, 4), N(8, 3) and N(6, 2)). The average
disutility of system monotonously declines as the task arrival
rate λi decreases. This is because that MEC servers only have
to handle a smaller number of tasks with the same service rate
fi, resulting in a consequent decline for the average completion
time of system.

Fig. 7(a) exhibits the average disutility of system with differ-
ent task arrival rates for the small-scale scenario. PSOGA per-
forms better than other algorithms, but the average performance
gap between SBOA and PSOGA is only 0.5%. In Fig. 7(c),
SBOA has the best performance, which is 2.2%, 2.8%, 3.7%,

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: GAME-BASED COMPUTATION OFFLOADING WITH IMPERFECT INFORMATION IN MULTI-EDGE ENVIRONMENTS 11

Fig. 6. Average disutility of system with different service rates in various scenarios.

Fig. 7. Average disutility of system with different task arrival rates in various scenarios.

TABLE III
EXECUTION TIME COMPARISON WITH DIFFERENT SERVER SCALES (S)

and 10.0%, on average better than that of PSOGA, IPA, DRL,
and LC, respectively.

Figs. 6 and 7 display that the performance of SBOA is better
than that of DRL in all scenarios. This is because DRL relies
on formed strategies during training and historical data, and
generates results through prediction methods. In contrast, the
proposed SBOA uses convex optimization methods to directly
generate the optimal offloading vector for each server through
mathematically precise calculations. SBOA does not rely on
prediction methods but convex optimization theory, ensuring
that a better solution can be found compared with DRL.

Table III displays the execution time comparison of different
algorithms (i.e., SBOA, PSOGA, IPA, and DRL) for finding
the optimal balancing offloading solution with different server

scales (i.e., small, medium, and large). The experimental setup
is the same as in Section VI-A. For the small-scale scenario, the
execution time of SBOA, IPA, and DRL is 1.20 s, 1.31 s, and
0.90 s, respectively, and those algorithms can satisfy the system
management. PSOGA’s execution time is 348.2 s, which makes
it difficult to adapt to the multi-edge environments with dynam-
ically changing load. As the number of MEC servers increases
to 30 and 45, the execution time of IPA increases to 3.87 s and
7.10 s, respectively. In contrast, the execution time of SBOA only
increases to 1.37 s and 1.68 s, which does not increase abruptly
with the number of servers. This is because IPA takes more time
to make offloading decisions when faced with a larger solution
space with perfect information (i.e., all servers’ information),
whereas SBOA can quickly make offloading decisions when
faced with a small solution space with imperfect information
(i.e., adjacent servers’ information). Therefore, SBOA can ef-
fectively deal with large-scale scenarios. The execution time of
DRL is slightly better than that of SBOA, with 0.98 s and 1.21 s
in medium-scale and large-scale scenarios, respectively. DRL,
like SBOA, also generates computation offloading schemes
with imperfect information through distributed decision-making
manner. It trains models on historical data and obtains results
quickly through prediction methods. Table III shows that the

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Fig. 8. Algorithms’ performance with different volumes of arriving tasks.

execution time of DRL is better than that of SBOA in three
scenarios, but they are of the same order of magnitude.

E. RQ3: Impact of Task Volume

To test the effects of different volumes of arriving tasks on the
performance of SBOA, we conduct the following experiments in
the medium-scale scenario. The 30 MEC servers are categorized
into 2 groups: one with high task volume, and the other with low
task volume. The task arrival rate λi for the high-load servers fol-
lows the normal distribution N(14, 4), and the low-load servers
follows the normal distribution N(5, 4). To demonstrate the
superiority of the computation offloading method, we introduce
the optimization rate (i.e., rQ) as an evaluation metric.

rQ(M) =
Q(LC)−Q(M)

Q(LC)
, (23)

where LC is one of the benchmark algorithms discussed in
Section VI-B, M is one of the algorithms (i.e., PSOGA, IPA,
DRL, and SBOA) except LC, and Q(M) corresponds to the
average disutility of system with the corresponding algorithm
M .

Fig. 8 displays the algorithms’ performance with different
volumes of arriving tasks. There are 5 groups of experiments,
where the percentage of high-load servers is {20%, 30%, 40%,
50%, 60%}, and the rest are low-load servers. When the percent-
age of high-load servers is 20%, the optimization rate of SBOA,
rQ(SBOA), is lower (i.e., only 23.2%). This is because there
are fewer tasks with high response time that can be optimized
by computation offloading when the percentage of high-load
servers is less. When the percentage of high-load servers in-
creases to 30%, 40%, and 50%, the rQ(SBOA) gradually in-
creases to 28.7%, 29.5%, and 31.4%, respectively. The reason
for this is that as the number of high-load server increases, the
number of high responsive task to be optimized also increases,
and the optimization rate is improved by offloading these tasks
to other idle servers. When the percentage of high-load servers
is 60%, the rQ(SBOA) slightly decreases to 30.3%. This is

because although there are more optimizable tasks, there is a
lack of enough idle servers to offload these tasks to limit the
optimization rate. Note that the optimization rate of SBOA
is better than that of other algorithms when the percentage
of high-load servers is more than 50%. SBOA and PSOGA
outperform each other in the medium-scale scenario, which is
demonstrated in RQ2. As the percentage of high-load servers
rises and the number of optimizable tasks increases, PSOGA
face greater challenges in finding the ideal balancing offloading
solution. In contrast, SBOA shows more adaptability in these
complex scenarios, and therefore obtains better performance.
Overall, the average rQ(SBOA) in these scenarios is 28.6%,
which indicates that SBOA can maintain better performance of
computation offloading with different volumes of arriving tasks.

VII. CONCLUSION AND THE FUTURE WORK

This paper has proposed a Synergistic Balancing Offloading
Algorithm (SBOA) through distributed decision-making manner
to obtain the optimal offloading strategy in multi-edge envi-
ronments. The synergistic computation offloading among MEC
servers is modeled as a non-cooperative game with imperfect
information. Furthermore, the game is mathematically analyzed
to prove that there is a Nash Equilibrium (NE) point. Simulation
results show that SBOA has good balancing performance for
reducing the computation pressure on high-load servers, and
its stability and effectiveness are significantly better than that
of IPA, DRL, and LC in either scenario. Particularly, SBOA
can effectively reduce the system completion time in large-scale
scenarios.

Our future work will handle the computation offloading for
dependent tasks in multi-edge environments. Simultaneously,
we will further consider the energy consumption of MDs, and
try to maximize their energy efficiency.

REFERENCES

[1] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward edge intelligence:
Multiaccess edge computing for 5G and Internet of Things,” IEEE Internet
Things J., vol. 7, no. 8, pp. 6722–6747, Aug. 2020.

[2] J. Mei, Z. Tong, K. Li, L. Zhang, and K. Li, “Energy-efficient heuristic
computation offloading with delay constraints in mobile edge computing,”
IEEE Trans. Serv. Comput., vol. 16, no. 6, pp. 4404–4417, Nov./Dec. 2023.

[3] Y. Yang, H. Shen, and H. Tian, “Scheduling workflow tasks with un-
known task execution time by combining machine-learning and greedy-
optimization,” IEEE Trans. Serv. Comput., vol. 17, no. 3, pp. 1181–1195,
May/Jun. 2024.

[4] Y. Wang, I. R. Chen, and D. C. Wang, “A survey of mobile cloud comput-
ing applications: Perspectives and challenges,” Wireless Pers. Commun.,
vol. 80, pp. 1607–1623, 2015.

[5] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey
of mobile cloud computing application models,” IEEE Commun. Surveys
Tuts., vol. 16, no. 1, pp. 393–413, First Quarter, 2014.

[6] L. Luo, H. Yu, K.-T. Foerster, M. Noormohammadpour, and S. Schmid,
“Inter-datacenter bulk transfers: Trends and challenges,” IEEE Netw.,
vol. 34, no. 5, pp. 240–246, Sep./Oct. 2020.

[7] S. Chu, C. Gao, M. Xu, K. Ye, Z. Xiao, and C. Xu, “Efficient multi-task
computation offloading game for mobile edge computing,” IEEE Trans.
Serv. Comput., vol. 17, no. 1, pp. 30–46, Jan./Feb. 2024.

[8] X. Xu et al., “An energy-aware computation offloading method for smart
edge computing in wireless metropolitan area networks,” J. Netw. Comput.
Appl., vol. 133, pp. 75–85, 2019.

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: GAME-BASED COMPUTATION OFFLOADING WITH IMPERFECT INFORMATION IN MULTI-EDGE ENVIRONMENTS 13

[9] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[10] X. Xu et al., “Dynamic resource allocation for load balancing in fog envi-
ronment,” Wireless Commun. Mobile Comput., vol. 50, no. 10, pp. 58–67,
2018.

[11] J. Tang, T. Qin, Y. Xiang, Z. Zhou, and J. Gu, “Optimization search strategy
for task offloading from collaborative edge computing,” IEEE Trans. Serv.
Comput., vol. 16, no. 3, pp. 2044–2058, May/Jun. 2023.

[12] Q. Liu, T. Xia, L. Cheng, M. Van Eijk, T. Ozcelebi, and Y. Mao,
“Deep reinforcement learning for load-balancing aware network control
in IoT edge systems,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 6,
pp. 1491–1502, Jun. 2022.

[13] J. Li et al., “An end-to-end load balancer based on deep learning for
vehicular network traffic control,” IEEE Internet Things J., vol. 6, no. 1,
pp. 953–966, Feb. 2019.

[14] C. Yang, X. Xu, M. Bilal, Y. Wen, and T. Huang, “Deep-deterministic-
policy-gradient-based task offloading with optimized k-means in edge-
computing-enabled IoMT cyber-physical systems,” IEEE Syst. J., vol. 17,
no. 4, pp. 5195–5206, Dec. 2023.

[15] C. Liu, K. Li, and K. Li, “A game approach to multi-servers load balancing
with load-dependent server availability consideration,” IEEE Trans. Cloud
Comput., vol. 9, no. 1, pp. 1–13, First Quarter, 2021.

[16] W. Fan, L. Yao, J. Han, F. Wu, and Y. Liu, “Game-based multitype task
offloading among mobile-edge-computing-enabled base stations,” IEEE
Internet Things J., vol. 8, no. 24, pp. 17691–17704, Dec. 2021.

[17] S. Duan et al., “MOTO: Mobility-aware online task offloading with adap-
tive load balancing in small-cell MEC,” IEEE Trans. Mobile Comput.,
vol. 23, no. 1, pp. 645–659, Jan. 2024.

[18] Y. Xu, T. Mohammed, M. Di Francesco, and C. Fischione, “Distributed
assignment with load balancing for DNN inference at the edge,” IEEE
Internet Things J., vol. 10, no. 2, pp. 1053–1065, Jan. 2023.

[19] L. Li, M. Siew, Z. Chen, and T. Q. Quek, “Optimal pricing for job
offloading in the MEC system with two priority classes,” IEEE Trans.
Veh. Technol., vol. 70, no. 8, pp. 8080–8091, Aug. 2021.

[20] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource alloca-
tion for computation and communication in mobile cloud with computing
access point,” in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[21] W. Lu and X. Zhang, “Computation offloading for partitionable applica-
tions in dense networks: An evolutionary game approach,” IEEE Internet
Things J., vol. 9, no. 21, pp. 20985–20996, Nov. 2022.

[22] H. Zhou, Z. Wang, G. Min, and H. Zhang, “UAV-aided computation
offloading in mobile-edge computing networks: A stackelberg game
approach,” IEEE Internet Things J., vol. 10, no. 8, pp. 6622–6633,
Apr. 2023.

[23] S. Liu, Y. Yu, L. Guo, P. L. Yeoh, B. Vucetic, and Y. Li, “Adaptive delay-
energy balanced partial offloading strategy in mobile edge computing
networks,” Digit. Commun. Netw., vol. 9, no. 6, pp. 1310–1318, 2023.

[24] X. Zhu, T. Zhang, J. Zhang, B. Zhao, S. Zhang, and C. Wu, “Deep
reinforcement learning-based edge computing offloading algorithm for
software-defined IoT,” Comput. Netw., vol. 235, 2023, Art. no. 110006.

[25] Y. Chen, W. Gu, J. Xu, Y. Zhang, and G. Min, “Dynamic task offloading for
digital twin-empowered mobile edge computing via deep reinforcement
learning,” China Commun., vol. 20, no. 11, pp. 164–175, 2023.

[26] M. Diamanti, C. Pelekis, E. E. Tsiropoulou, and S. Papavassiliou, “Delay
minimization for rate-splitting multiple access-based multi-server MEC
offloading,” IEEE/ACM Trans. Netw., vol. 32, no. 2, pp. 1035–1047,
Apr. 2024.

[27] C. Yi, J. Cai, T. Zhang, K. Zhu, B. Chen, and Q. Wu, “Workload re-
allocation for edge computing with server collaboration: A cooperative
queueing game approach,” IEEE Trans. Mobile Comput., vol. 22, no. 5,
pp. 3095–3111, May 2023.

[28] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, “Multi-
UAV-enabled load-balance mobile-edge computing for IoT networks,”
IEEE Internet Things J., vol. 7, no. 8, pp. 6898–6908, Aug. 2020.

[29] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, “Fog computing
for energy-aware load balancing and scheduling in smart factory,” IEEE
Trans. Ind. Inform., vol. 14, no. 10, pp. 4548–4556, Oct. 2018.

[30] B. Lin et al., “A time-driven data placement strategy for a scientific
workflow combining edge computing and cloud computing,” IEEE Trans.
Ind. Inform., vol. 15, no. 7, pp. 4254–4265, Jul. 2019.

[31] J. Tan, R. Khalili, H. Karl, and A. Hecker, “Multi-agent distributed
reinforcement learning for making decentralized offloading decisions,”
in Proc. 2022 IEEE Conf. Comput. Commun., 2022, pp. 2098–2107.

[32] M. Hu, Z. Xie, D. Wu, Y. Zhou, X. Chen, and L. Xiao, “Heteroge-
neous edge offloading with incomplete information: A minority game ap-
proach,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 9, pp. 2139–2154,
Sep. 2020.

[33] Q. Wang, Y. Zhu, and X. Wang, “Incomplete information based collabora-
tive computing in emergency communication networks,” IEEE Commun.
Lett., vol. 24, no. 9, pp. 2038–2042, Sep. 2020.

[34] A. M. Jasim and H. Al-Raweshidy, “An adaptive SDN-based load balanc-
ing method for edge/fog-based real-time healthcare systems,” IEEE Syst.
J., vol. 18, no. 2, pp. 1139–1150, Jun. 2024.

[35] X. Chen, J. Hu, Z. Chen, B. Lin, N. Xiong, and G. Min, “A reinforce-
ment learning-empowered feedback control system for industrial Internet
of Things,” IEEE Trans. Ind. Inform., vol. 18, no. 4, pp. 2724–2733,
Apr. 2022.

[36] M. Jia, W. Liang, Z. Xu, M. Huang, and Y. Ma, “QoS-aware cloudlet load
balancing in wireless metropolitan area networks,” IEEE Trans. Cloud
Comput., vol. 8, no. 2, pp. 623–634, Second Quarter 2020.

[37] J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris, Fundamentals
of Queueing Theory, vol. 399. Hoboken, NJ, USA: Wiley, 2018.

[38] G. Li, J. Cai, X. Chen, and Z. Su, “Nonlinear online incentive mechanism
design in edge computing systems with energy budget,” IEEE Trans.
Mobile Comput., vol. 22, no. 7, pp. 4086–4102, Jul. 2023.

[39] G. Owen, Game Theory. Bingley, U.K.: Emerald Group Publishing, 2013.
[40] W. Dai, H. Lu, J. Xiao, and Z. Zheng, “Task allocation without commu-

nication based on incomplete information game theory for multi-robot
systems,” J. Intell. Robotic Syst., vol. 94, pp. 841–856, 2019.

[41] J. Bhandari and D. Russo, “Global optimality guarantees for policy gradi-
ent methods,” Operations Res., vol. 72, no. 5, pp. 1906–1927, Sep. 2024.

[42] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[43] G. Scutari, D. P. Palomar, F. Facchinei, and J.-S. Pang, “Monotone games
for cognitive radio systems,” Distrib. Decis. Mak. Control, vol. 417, no. 1,
pp. 83–112, 2012.

[44] Y.-H. Wu, Z.-C. Yu, C.-Y. Li, M.-J. He, B. Hua, and Z.-M. Chen, “Re-
inforcement learning in dual-arm trajectory planning for a free-floating
space robot,” Aerosp. Sci. Technol., vol. 98, 2020, Art. no. 105657.

[45] A. Laha, B. Yin, Y. Cheng, L. X. Cai, and Y. Wang, “Game theory
based charging solution for networked electric vehicles: A location-aware
approach,” IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6352–6364,
Jul. 2019.

[46] M. De Santis, G. Eichfelder, J. Niebling, and S. Rocktäschel, “Solving
multiobjective mixed integer convex optimization problems,” SIAM J.
Optim., vol. 30, no. 4, pp. 3122–3145, 2020, doi: 10.1137/19M1264709.

[47] Z. Zhao, S. Liu, M. Zhou, D. You, and X. Guo, “Heuristic scheduling
of batch production processes based on petri nets and iterated greedy
algorithms,” IEEE Trans. Automat. Sci. Eng., vol. 19, no. 1, pp. 251–261,
Jan. 2022.

[48] Y. Li, A. Zhou, X. Ma, and S. Wang, “Profit-aware edge server placement,”
IEEE Internet Things J., vol. 9, no. 1, pp. 55–67, Jan. 2022.

[49] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C.-H. Hsu, “User allocation-
aware edge cloud placement in mobile edge computing,” Softw.: Pract.
Exp., vol. 50, no. 5, pp. 489–502, 2020.

[50] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A reinforce-
ment learning approach,” IEEE Trans. Mobile Comput., vol. 20, no. 3,
pp. 939–951, Mar. 2021.

[51] X. Chen, Z. Yao, Z. Chen, G. Min, X. Zheng, and C. Rong, “Load balancing
for multiedge collaboration in wireless metropolitan area networks: A
two-stage decision-making approach,” IEEE Internet Things J., vol. 10,
no. 19, pp. 17124–17136, Oct. 2023.

[52] Z. Xiao, Q. Qiu, L. Li, Y. Feng, Q. Lin, and Z. Ming, “An efficient service-
aware virtual machine scheduling approach based on multi-objective
evolutionary algorithm,” IEEE Trans. Serv. Comput., vol. 17, no. 5,
pp. 2027–2040, Sep./Oct. 2024.

[53] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms for
parameter optimization,” Evol. Comput., vol. 1, no. 1, pp. 1–23, 1993.

[54] F. Xu, Z. Zhang, J. Feng, Z. Qin, and Y. Xie, “Efficient deployment
of multi-UAV assisted mobile edge computing: A cost and energy per-
spective,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 5, 2022,
Art. no. e4453.

[55] H. Cao and J. Cai, “Distributed multiuser computation offloading for
cloudlet-based mobile cloud computing: A game-theoretic machine learn-
ing approach,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 752–764,
Jan. 2018.

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1137/19M1264709

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2025

Bing Lin received the BS and MS degrees in
computer science from Fuzhou University, Fuzhou,
China, in 2010 and 2013, respectively, and the PhD
degree in communication and information system
from Fuzhou University, in 2016. He is currently
an associate professor with the College of Physics
and Energy, Fujian Normal University. Now he is
the deputy director of the Department of Energy
and Materials, and leads the Intelligent Computing
research group. His research interest mainly includes
parallel and distributed computing, computational in-

telligence, and data center resource management. He has published more than
fifty journals and conference articles, such as Transactions on Parallel and
Distributed Systems, Transactions on Industrial Informatics, Transactions on
Network and Service Management, and IoT J., etc.

Jie Weng received the BS degree in computer sci-
ence and technology from Fujian Normal University,
Fujian, China, in 2021. He is currently working to-
ward the MS degree in software engineering with
the College of Computer and Data Science, Fuzhou
University, Fuzhou, China. Since September 2021,
he has also been a part of Fujian Key Laboratory
of Network Computing and Intelligent Information
Processing, Fuzhou University. His main research
interests include game theory, mobile edge computing
and load balancing.

Xing Chen (Member, IEEE) is a professor with
Fuzhou University, and the director of Fujian Key
Laboratory of Network Computing and Intelligent
Information Processing. He focuses on the soft-
ware systems and engineering approaches for cloud
and mobility. His current projects cover the topics
from self-adaptive software, computation offloading,
model driven approach and so on. He has published
more than 80 journal and conference articles, includ-
ing IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Cloud Computing,

IEEE Transactions on Industrial Informatics, etc.

Yun Ma received the PhD degree majoring in com-
puter science from the School of EECS, Peking Uni-
versity, under the direction of Professor Hong Mei
and Professor Gang Huang. His research interests lie
in mobile computing, Web technologies, and services
computing Currently, he focuses on synergy between
the mobile and the Web, trying to improve the mobile
user experience by leveraging the best practices from
native apps and Web apps.

Ching-Hsien Hsu (Senior Member, IEEE) is cur-
rently a chair professor and the dean of the College
of Information and Electrical Engineering, Asia Uni-
versity, Taiwan, and a professor with the Department
of Computer Science and Information Engineering,
National Chung Cheng University. His research in-
terests include high performance computing, cloud
computing, parallel and distributed systems, Big Data
analytics, and ubiquitous/pervasive computing and
intelligence. He has published 200 papers in top
journals such as IEEE Transactions on Parallel and

Distributed Systems, IEEE Transactions on Services Computing, ACM Trans-
actions on Multimedia Computing, Communications, and Applications, IEEE
Transactions on Cloud Computing, IEEE Transactions on Emerging Topics
in Computing, IEEE System, IEEE Network, top conference proceedings, and
book chapters in these areas. He has been acting as an author/coauthor or
an editor/co-editor of ten books from Elsevier, Springer, IGI Global, World
Scientific, and McGraw-Hill. He is a fellow of the Institution of Engineering
and Technology.

Authorized licensed use limited to: Hohai University Library. Downloaded on February 28,2025 at 08:24:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

